Techniques for Learning Binary Stochastic Feedforward Neural Networks

نویسندگان

  • Tapani Raiko
  • Mathias Berglund
  • Guillaume Alain
  • Laurent Dinh
چکیده

Stochastic binary hidden units in a multi-layer perceptron (MLP) network give at least three potential benefits when compared to deterministic MLP networks. (1) They allow to learn one-to-many type of mappings. (2) They can be used in structured prediction problems, where modeling the internal structure of the output is important. (3) Stochasticity has been shown to be an excellent regularizer, which makes generalization performance potentially better in general. However, training stochastic networks is considerably more difficult. We study training using M samples of hidden activations per input. We show that the case M = 1 leads to a fundamentally different behavior where the network tries to avoid stochasticity. We propose two new estimators for the training gradient and propose benchmark tests for comparing training algorithms. Our experiments confirm that training stochastic networks is difficult and show that the proposed two estimators perform favorably among all the five known estimators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

T He O Uter P Roduct S Tructure of N Eural N Et - Work D Erivatives

Training methods for neural networks are primarily variants on stochastic gradient descent. Techniques that use (approximate) second-order information are rarely used because of the computational cost and noise associated with those approaches in deep learning contexts. We can show that feedforward and recurrent neural networks exhibit an outer product derivative structure but that convolutiona...

متن کامل

On sequential construction of binary neural networks

A new technique called sequential window learning (SWL), for the construction of two-layer perceptrons with binary inputs is presented. It generates the number of hidden neurons together with the correct values for the weights, starting from any binary training set. The introduction of a new type of neuron, having a window-shaped activation function, considerably increases the convergence speed...

متن کامل

Applying Multiple Complementary Neural Networks to Solve Multiclass Classification Problem

In this paper, a multiclass classification problem is solved using multiple complementary neural networks. Two techniques are applied to multiple complementary neural networks which are one-against-all and error correcting output codes. We experiment our proposed techniques using an extremely imbalance data set named glass from the UCI machine learning repository. It is found that the combinati...

متن کامل

Learning algorithms for feedforward networks based on finite samples

We present two classes of convergent algorithms for learning continuous functions and regressions that are approximated by feedforward networks. The first class of algorithms, applicable to networks with unknown weights located only in the output layer, is obtained by utilizing the potential function methods of Aizerman et al. (1970). The second class, applicable to general feedforward networks...

متن کامل

One-Against-All Multiclass Classification Based on Multiple Complementary Neural Networks

In general, there are two ways to deal with one-against-all multiclass neural network classification. The first way is the use of a single k-class neural network trained with multiple outputs. Another way is the use of multiple binary neural networks. This paper focuses on the later way in which multiple complementary neural networks are applied to one-against-all instead of using only multiple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1406.2989  شماره 

صفحات  -

تاریخ انتشار 2014